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Abstract: Using the known formulation and properties of Rossby number, we estimate its range of possible 

values and we study the relation to the turbulent scales of the accretion disc flow.  In this paper, it is shown how the 
variable values of Rossby number are associated with two- or three dimensional flow motions. We consider the behavior 
of basic equations of accretion disc with the presence of Rossby number. Finally, as a connection with presented 
considerations, it is accented on the arising of vortex formations and their dynamics. We show the indirectly influences 
on the light curve form of one selected binary star. We perform calculations of Rossby number based on binary star 
systems models with accretion disc.   

 
 

I. Introduction 
 

Fluid motion and hydrodynamic processes are one of the most important investigations in accretion 
disc dynamic. We consider that the flow in accretion disc is differentially rotating and in this survey we imply 
an additional term having influence on the instability processes. Such term is known as Rossby number 
named for Carl-Gustav Rossby, who first explained the large-scale motion in the atmosphere, using the 
terms of fluid mechanics.  

In our study we use the next definition of Rossby number:  
The dimensionless ratio of inertia force to Coriolis force which gives an indication of the importance of 

rotation on flow. It is given by:  
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where  is the speed of fluid flow, v Ω  is the angular velocity or rotation, θ  is the angle between the 
axis of rotation and the direction of fluid motion and  is the horizontal length-scale. The definition is taken 
from Blandford (2004). 
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This number plays a fundamental role to determine the behavior of large-scale astrophysical fluid 
dynamics. Large-scale flows are defined as those that are significantly influenced by the star's rotation and 
with sufficiently large L for Ro to be order one or less (e.g., flow with sufficiently small Rossby number are in 
geostrophyc balance). 

Richard (2003) recently proposed a simple model describing the necessary conditions for self-
sustained turbulence in differentially rotating flows, where it can be seen that the energy extraction is directly 
proportional to the shear present in the base flow (a classical result for shear flows). He also implies that 
there is a critical Rossby number, above which the energy extraction is sufficient to compensate for the 
stiffness introduced in the system by the mean rotation: 
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where r is the local radius and ΩO is the mean rotation. 
But, it has to be pointed (as Chagelishvili et al. (2003) also suggested) that the non-linear interactions 

(also referred to as turbulent diffusion) do not participate in the energy extraction, but only redistribute it and 
counteract the effects of rotation.  

In this scenario, once the critical Rossby number has been reach (Richard 2003) and the critical 
amplitude is present, the flow can then undergo a transition from its laminar state to a state where non-linear 
shear turbulence is developed. 
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In the paper of (Morize et al. 2005) it is investigated the decay of initially three-dimensional 
homogeneous turbulence in a rotating frame. They found that during the decay, strong cyclonic coherent 
vortices emerge, while the Rossby number value decreases below the value of 2 ± 0.5.  

Several simulations were conducted to examine the nature of balance in rotating stratified turbulence 
at different Rossby numbers (McKiver and Dritschel, 2006). They found a significant difference in the 
behavior of potential vorticity at low and higher Rossby number. The balance of vorticity decreases with 
increasing Rossby number and the structures which appear in the non-balanced field are mostly in small 
scale.  

In the current survey we use the simplified formulation and expressions to examine the features of 
Rossby number and estimate its values in the case of astrophysical accretion flow.  We bring to stay here in 
three cases of our considerations: A, B, C, presented in a next section. 

 
II. Calculations and results 

 

It is known that the rotation is able to confine larger scales in a two-dimensional state while efficient 
turbulent diffusion is achieved by three-dimensional motions. Typical geophysical rotating flows exhibit both 
two-dimensional (at large scales) and three-dimensional (at smaller scales) structures.  
 

Results A 
 

The Rossby number for the mean flow can be rewritten now as: 
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where it appears as the ratio of local radius r  over the characteristic length scale of the shear,  is the 
angular velocity again.  

Ω

We may give the relation with a quantity more often referred to in astrophysics, the epicyclic frequency ω: 
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Using this formulation we estimated the range of critical values of Rossby number with the connection 

of quantities of frequency and angular velocity. We present the results graphically: Fig 1a and 1b. 
We see from the figures that the values of Rossby number are low and it works at limited frequency range. 
 
 
 
 
 
 
 
 
 
 

1  a 
 
 
 
 
 
 
 

The Rossby number of a turbulent structure of characteristic length scale λ  and rotating with mean 
flow velocity  can be approximated by u Ω∝ 22λλ ruRO  (known as “turbulent Rossby number”). The 
denominator of such expressed Rossby number is twice the rotation experienced by the turbulent structure, 
i.e. ( ) ≅ 2Ω±Ω2 ru . The numerator is the derivative with respect to the radius of the turnover time, i.e. 

( ) 22 λλ rurururr rrr ≅+Ω∂≅Ω∂+Ω∂ λ  where we have used the relation:  
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b a 

ω ΩFig. 1.  Graphic interpretation of simple dependence between ,  and Ro. In the left panel /fig.1a/ we 
used small scale value for Ro calculations. In the right panel /fig.1b/, it is applied higher scale value. 
It is seen that the results are in a same range of values 
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We can then write, from Eq.( 3 ) and  from the condition r<<λ  that 00 RrR
λλ∞ . 

 
Hence, the ratio of the characteristic turbulent length scale over the local radius writes as:  
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From the last relation, eq. (4), it follows that (for a given Rossby number) the turbulent Rossby number 
increases when going to smaller scales along the turbulent cascade. Baroud et al. (2003) have shown that 
low Rossby numbers are associated with two-dimensional turbulence whereas higher Rossby numbers are 
associated with three-dimensional turbulent structures. This result is consistent with the classic picture of a 
turbulent spectrum showing two-dimensional structures at large scales and three-dimensional ones at 
smaller scales.  
 

Results B 
 

To obtain the information for the effect of Rossby number we imply its expression in the main 
equations related to accretion disc dynamic. We present the results as follows: 
 

We interpolate the dimensionless Rossby number into the Navier-Stokes equations in vector form:  
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Where, it is used the well known basic denotations as follows: ρ - is the mass density of the flow;  - is the 
velocity of the flow; 

v
P - is the pressure; ν - is the kinematic viscousity; Ω  - is the angular velocity; ( )r×Ω×Ω  

- is the centrifugal force of the rotating accretion flow; v×Ω2  - expresses the Coriolis force; 
 

After implying an implicit differentiation, it is yielded the velocity distribution and its graphic form is in 
the figure 1: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 2. The distribution shows that at the high values of parameters the dynamical 

processes are more intensive in the presence of non-integrated angular velocity  
 
 

Even at low values, it is obviously that the Rossby number gives rise to velocity variations. This fact 
shows us that we should not neglect its presence, when we study the behaviour and dynamics of accretion 
disc flow.    
 

Results C 
 

The third result of our study, which we present here, shows the indirect effect of Rossby number on 
the shape of light curves. 

The variations of Rossby number could be contribute in the process of some vortex formations in the 
accretion disc area. Its increment acts as an accelerator of the transition from laminar to turbulent motion of 
the flow. As we consider binary star system with accretion disc, we show the light curve of AB And produced 
at such unstable states. The shape of light curve gives us information about the strong disturbances with the 
suddenly appearing bursts.   

The presence of an accretion disc affects on the light curve in two ways: as a source of light and as a 
shield of the surface of the part of the companion from the X-ray heating. 
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It is detected that in depends of Rossby number the lightcurve produces the variation in its shape. It acts 
usually at small value and there is a gradual, broad modulation. Whereas, it begins to see the effects of two-
spiral arm emitting region and the narrow peaks of the brightness. Such lightcurve modulations may 
associate with Rossby type of instability 
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Fig. 3. Light curve of AB AND binary star. The two figures present the creating of graphic by two 
different programs and methods. 

1.  Using AAVSO data /left panel/. 2.  Preparing by program of Kreiner [2004] /right panel/ 

 
It is seen in the figures the brightness peaks, result of hard outbursts. The above selected types of 

binaries are important for us, because of their high inclination (i ). As it is mention above, this feature is an 
indicator for arising of unstable processes, such as wave propagation, structure formation and Rossby type 
of instability.  
 

III. Conclusion 
 

From an astrophysical point of view, it is important to investigate the turbulence and vorticity 
formations as a main transport mechanism of angular momentum in accretion discs.  
Based on the properties of differentially rotating flow in the accretion disc area, we emphasized in our 
analyses on the presence of special relation between inertial and Coriolis force, known as a Rossby number. 
We considered the accretion disc as a hydrodynamical system and we used the base equation of Navier-
Stokes, including Rossby number. The results show the effect of this number on several situations: the effect 
over the velocity distribution; the range of Rossby number values which are effective for our astrophysical 
study; influence over the variations of light curve of selected binary star.  
Remembering that high (resp. low) Rossby number are associated with three-(resp. two-) dimensional 
motions, this result is coherent with the classic picture of a turbulent spectrum showing two- dimensional 
structures at large scales and three-dimensional ones at smaller scales.  
We presented in this survey our common results of the studying problem, without specify the values of the 
Rossby number for different phenomena or for a star.  
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